Publications

SMap: Internet-wide Scanning for Spoofing

AuthorDai, T.; Shulman, H.
Date2021
TypeConference Paper
AbstractTo protect themselves from attacks, networks need to enforce ingress filtering, i.e., block inbound packets sent from spoofed IP addresses. Although this is a widely known best practice, it is still not clear how many networks do not block spoofed packets. Inferring the extent of spoofability at Internet scale is challenging and despite multiple efforts the existing studies currently cover only a limited set of the Internet networks: they can either measure networks that operate servers with faulty network-stack implementations, or require installation of the measurement software on volunteer networks, or assume specific properties, like traceroute loops. Improving coverage of the spoofing measurements is critical. In this work we present the Spoofing Mapper (SMap): the first scanner for performing Internet-wide studies of ingress filtering. SMap evaluates spoofability of networks utilising standard protocols that are present in almost any Internet network. We applied S Map for Internet-wide measurements of ingress filtering: we found that 69.8% of all the Autonomous Systems (ASes) in the Internet do not filter spoofed packets and found 46880 new spoofable ASes which were not identified in prior studies. Our measurements with SMap provide the first comprehensive view of ingress filtering deployment in the Internet as well as remediation in filtering spoofed packets over a period of two years until May 2021. We set up a web service at https://smap.cad.sit.fraunhofer.de to perform continual Internet-wide data collection with SMap and display statistics from spoofing evaluation. We make our datasets as well as the SMap (implementation and the source code) publicly available to enable researchers to reproduce and validate our results, as well as to continually keep track of changes in filtering spoofed packets in the Internet.
ConferenceAnnual Computer Security Applications Conference (ACSAC) <37, 2021, Online>
PartAssociation for Computing Machinery -ACM-: 37th Annual Computer Security Applications Conference, ACSAC 2021. Proceedings: Virtual Conference, 6-10 December 2021. New York: ACM, 2021, pp. 1039-1050
PartnISBN : 9781450385794