2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

Counting in the Dark:
DNS Caches Discovery and Enumeration in the Internet

Amit Klein, Haya Shulman and Michael Waidner

Fraunhofer Institute for Secure Information Technology
Darmstadt, Germany

Abstract

Domain Name System (DNS) is a fundamental element
of the Internet providing lookup services for end users
as well as for a multitude of applications, systems and
security mechanisms that depend on DNS, such as anti-
spam defences, routing security, firewalls, certificates
and more. Caches constitute a critical component of
DNS, allowing to improve efficiency and reduce latency
and traffic in the Internet. Understanding the behaviour,
configurations and topologies of caches in the DNS
platforms in the Internet is important for efficiency and
security of Internet users and services.

In this work we present methodologies for efficiently
discovering and enumerating the caches of the DNS
resolution platforms in the Internet. We apply our
techniques and methodologies for studying caches in
popular DNS resolution platforms in the Internet. Our
study includes networks of major ISPs, enterprises
and professionally managed open DNS resolvers. The
results of our Internet measurements shed light on
architectures and configurations of the caches in DNS
resolution platforms.

I. Introduction

Domain Name System (DNS), [RFC1034, RFC1035],
has a key role in the Internet, and its correctness and
availability are critical to the security and functional-
ity of Internet clients, services and networks. Initially
designed to translate domain names to IP addresses,
DNS is increasingly utilised to facilitate a wide range of
applications and constitutes an important building block
in the design of scalable network architectures. Over
the years, the DNS infrastructure has evolved into a
complex ecosystem.

Due to the significance of DNS and its increasing
complexity, the research and operational communities
invest considerable efforts to gain insight into the inner
workings of DNS. Multiple studies were done in order

2158-3927/17 $31.00 © 2017 IEEE
DOI 10.1109/DSN.2017.63

367

to understand the complexity and security of the DNS
infrastructure; we review related work and compare to
our research in Section VI

In this work we focus on one of the most important
elements of the DNS infrastructure: the caches. The
idea is simple: once a record is requested, it is cached
and subsequent requests for the same record will be
responded from the cache. This allows to reduce traffic
in the Internet and improve efficiency and performance
of clients and services. Our goal is to understand the
topologies and configurations of the caches, in partic-
ular, the correlation and relationship between the IP
addresses used to communicate with the clients and the
DNS nameservers, and the caches used by them.

Understanding the caches is critical for improving the
security and performance of the Internet. Our current
view of basic Internet components is based on standard
documents and initial designs. However, most systems
significantly evolved since their conception. Further-
more, typically the networks or Internet operators make
different choices when setting up their infrastructure.
In order to evaluate or improve security of the basic
Internet components a clear understanding thereof is
important. Even basic questions, such as a number of
caches in a DNS platform, are necessary to evaluate
vulnerabilities to cache poisoning attacks. We explain
the motivation for studying the caches in Section II and
provide examples.

For our study we design methodologies for measuring
the caches and apply them to the DNS platforms in
the Internet. The challenge that our study faces is
the following: during a DNS transaction, there is no
direct interaction of the clients and nameservers with
the caches. Specifically, the caches are ‘hidden’ behind
resolving devices that communicate with the clients and
with the nameservers; see details pertaining to DNS
resolution platforms in Section I-A. Our methodology
uses the standard DNS request/response behaviour - we
trigger specially crafted DNS requests for records in our

IEEE
dcomputer
society



domains. The DNS requests (including the requested
records and their type), that arrive from the resolution
platforms at our nameservers, are used as a side channel
to infer information about the caches hidden behind the
IP addresses of the tested DNS platform. Our methods
enable us ‘to decouple’ the caches from the IP addresses
and count the number of caches as well as the mapping
between the caches and IP addresses.

Our contribution is twofold: Conceptually, our study
improves the current understanding of the DNS resolu-
tion platforms and serves as a building block for further
research on DNS performance and security. In particu-
lar, we show that the DNS resolution platforms are more
complex than the traditional model of DNS whereby
a single cache is situated behind a given IP address.
Practically, our tools and measurements can be used
for improving the security, efficiency and consistency of
DNS as well as for designing mechanisms that utilise
the DNS infrastructure.

A. DNS Resolution Platforms

We consider a general model for DNS resolution
platforms, illustrated in Figure 1. Typically a full subnet
is allocated for the resolvers (as shown in Figure 1) but
that is not mandatory for our analysis. The platform
consists of a set (232 of ingress IP addresses which
handle DNS queries from the clients, a set of n caches,
and a set (23277) of egress IP addresses, which com-
municate with the nameservers if the queries from the
clients cannot be satisfied from (one of) the caches. The
load balancers apply logic for selection of the caches to
sample, and for an egress resolver’s IP address (in case
a requested record cannot be satisfied from caches).

Caches Discovery
& Enumeration
(CDE) Infrastructure

Set.up 1 Targat DNS Resclution Platform
Indirect

Prober

Internal

Prosy
o, web, _§

a.b.c.d/x

Ingress IPs

quer

——

n Caches

Target Network

Fig. 1. A generic view on DNS resolution platforms and the relevant
actors.

This infrastructure corresponds to complex platforms
such as Google Public DNS, and it can also be ab-
stracted to incorporate a very simple version for a DNS
resolution platforms with a single IP address which
performs both the ingress and egress functionalities and
uses a single cache.

Our measurement infrastructure, Caches Discovery
and Enumeration (CDE) Infrastructure uses direct and
indirect probers to communicate with the ingress IP

368

addresses of the DNS resolution platforms, and a set
of nameservers to communicate with the egress IP
addresses of the DNS resolution platforms.

B. Contributions

We design tools for studying the caches in DNS
resolution platforms in the Internet, and report on the
results of our large scale evaluation of caches in diverse
networks populations. Our analyses provide insights on
architecture of caches in DNS platforms.

Our study is performed on a diverse and represen-
tative dataset of networks. For our data collection we
utilise three different approaches: (1) a distributed ad-
network, (2) email servers in popular domains, (3) pop-
ular Alexa networks (www.alexa.com) that operate
open resolvers to reduce traffic to nameservers (see
details in Section III). The evaluation on different types
of networks offers an accurate and representative view
of the DNS resolution platforms in the Internet. Prior
studies on DNS resolvers were typically done either on
the nameservers’ side (by collecting queries that arrive
at the nameservers) or by scanning the IPv4 address
block for open recursive resolvers.

Our tools enable repetitive studies of the caches over
periods of time. This allows to perform analyses of
adoption of new mechanisms, trends, growth of the
DNS resolution platforms and more. We make our tools

available for public use!.

C. Organisation

In Section II we explain motivation for our study and
describe examples where the tools and the statistics can
be useful. In Section III we present our dataset and data
collection study, and report on the insights important
for characterising the DNS infrastructure (such as IP to
caches mapping). In Section IV we design techniques
for caches enumeration and for mapping between IP
addresses and caches. In Section V we apply our
techniques for a study of DNS resolution platforms in
the Internet. In Section VI we compare our study to
related work. We conclude this work in Section VII and
provide directions for future work.

II. Motivation for Studying Caches

Understanding Internet components is critical for im-
proving their security and for designing mechanisms
that use them or depend on them. In this section we
explain the importance of studying the caches in DNS
platforms.

'Due to double blind requirement, the tools are available upon
request from the authors.



A. Security

The structure of DNS platforms and the number of
caches that they use are important parameters in assess-
ing the security of networks against cache poisoning
attacks. Using multiple caches significantly increases
the difficulty of cache poisoning. During a cache poison-
ing attack, spoofed responses, containing incorrect DN'S
records, are sent to the victim DNS resolver. The re-
solver accepts only correct responses, namely those with
correct challenge response authentication parameters
(defined in [RFC5452]). However, recent work showed
that often the defences can be circumvented, [1], [2],
[3], [4], [5], [6], [7]. As a result, an off-path attacker can
inject a spoofed response that would be accepted and
cached by the resolver. A man-in-the-middle (MitM)
attacker does not even need to attempt to guess the
challenge response authentication, but can simply copy
the values from the request to the response. Typically
a cache would already contain the values which the
attacker attempts to inject, hence the attacker would
need to overwrite the cached records with ones that
contain spoofed values, [8]. This requires exchanging
a sequence of request/response pairs with the same
cache. In a multiple cache scenario the difficulty to
launch a successful cache poisoning attack increases
significantly. For instance, different caches apply dif-
ferent logic for deciding which records to cache, hence
the attacker would need to force his attack to run
against a specific cache with the vulnerable software.
Furthermore, the spoofed records sent by the attacker
will be distributed to multiple caches, hence rendering
the attack ineffective - say if an attacker wishes to
inject an NS record and then to use it to supply a
spoofed A record for a website. In that case, if one
of the records ‘hits’ a different cache, the attack fails.
Understanding the structure of DNS platforms and the
number of caches that they use enables researchers and
network operators to evaluate resilience and security
against cache poisoning attacks.

B. Resilience

Tools for studying caches allow to model and anal-
yse the dependability and security of DNS resolution
platforms without a priori knowledge of their structure.
For instance, how resilient is a DNS platform and the
services that depend on it against Distributed Denial of
Service (DDoS) attacks. How easy is it to disconnect
services from the Internet by attacking DNS? Tools
developed in this work help network operators to assess
the security and dependability of their networks. For
instance, a network operator can identify when some
of the caching components fail and are not available,
e.g., a DNS platform uses four caches, but our tool
measures two, namely two are down. Our tools can also

369

be used for large scale studies of the dependability of
the Internet while being non intrusive and requiring no
cooperation from the tested networks.

In addition to facilitating further research on re-
silience of networks and platforms in the Internet,
our tools provide means for comparing DNS service
operators in order to select one with better resilience
and fault tolerance.

C. Tools for Networks Management and Research

In this section we provide a number of examples, in
which caches enumeration is critical and useful.

| Consistency of the caching of DNS records. Our
study provides tools for differentiating between multiple
caches and inconsistency in caches with respect to DNS
Time-to-Live (TTL). For instance, requesting the same
record from a DNS resolution platform twice, within a
time interval that is shorter than the TTL of the DNS
record, should result in only one DNS request issued
by the resolution platform to the nameservers?. Current
studies interpret multiple requests as inconsistency with
TTL. However, it can also be that the DNS resolu-
tion platform is using multiple caches. When a DNS
platform is configured with multiple caches, not all the
caches will have the requested record, hence will issue
the query again. This can be mistakenly taken as an
indication that the DNS platform does not respect the
TTL. Our tools allow researchers and network operators
to differentiate between multiple caches and caches with
inconsistent TTL.

| Size of DNS resolution platforms. Originally de-
signed to translate domain names to IP addresses,
DNS is increasingly used by different mechanisms,
for instance mechanisms for security, such as DANE,
anti-spam mechanisms, routing defences against prefix
hijacks. As a result, the DNS resolution platforms have
to satisfy the increasing demands for storage and the
traffic volume. Our tools enables measuring the sizes of
DNS resolution platforms in the Internet.

| Device discovery. Device discovery mechanisms
find devices that have addresses, since caches are not
identified by IP addresses, they would not be detected.
Our tools extend current device discovery mechanisms
enabling discovery of hidden caches . Our ideas and
techniques can also be applied for design of discovery
of other hidden caches.

| Measuring software and new mechanisms. Dis-
tribution of patches and upgrades. Caches on DNS
resolution platforms are often running different DNS
software. For distribution and integration of patches it
is important to know which software the caches are

2Some DNS resolution platforms enforce a minimal and a maximal
TTL. In those cases, TTL that is smaller than the minimum, or larger
than the maximum will be adjusted by the cache.



running. Inferring the software used by DNS caches is
also important for the studies measuring deployment of
DNS software in the Internet. As we show in related
work, currently, studies on DNS resolution platforms
measure devices with IP addresses but omit the hidden
caches. Similarly our tools enable studies of adoption of
new mechanisms for DNS, such as the transport layer
EDNS [RFC6891] mechanism.

III. Data Collection

We perform our study of DNS resolution platforms on a
dataset of diverse networks, which comprise: (1) open
recursive resolvers, (2) resolvers operated by Internet
Service Providers (ISPs), and (3) resolvers serving
enterprises. Our data collection methodology generates
active probes to the DNS resolvers in the target (tested)
networks directly in case of networks operating open
recursive resolvers and indirectly via email servers or
web browsers.

In contrast to prior work on DNS, which typically
collect data from open resolvers, our work provides a
wide view on different types of networks. We explain
the data collection for our dataset using open resolvers,
email servers and ad-network in Sections III-A, III-B
and III-C respectively.

In Figure 2 we list top ten Internet Service Providers
(ISPs) of the DNS platforms in our dataset (each column
represents a distinct dataset).

A. Collecting Data with Open Resolvers

Our dataset of networks operating open resolvers
contains popular networks, and excludes malicious net-
works and home networks. We discuss our data collec-
tion and show that the networks are well managed and
often security aware.

Our population of networks running open resolvers
includes public services, Google Public DNS and
OpenDNS as well as 1K networks operating open
resolvers among top-10K Alexa networks (taken from
wWww.alexa.com).

We obtain the IP addresses of 1K domains containing
open resolvers out of top-10K Alexa networks in two
steps: (1) we queried the top-10K Alexa domains for
nameserver (NS) records, and their corresponding IP
addresses (A records); (2) we select the first 1K domains
that provide open DNS resolution services, by querying
these IP addresses for records in our domain. This
resulted in 1739 IP addresses located in 63 countries,
and hosted by 1532 Autonomous Systems (ASes). These
IP addresses correspond to open resolvers whose main
purpose is to reduce traffic to the nameservers, by
responding to the clients’ queries from the cache. The
open resolvers are transparent to the clients, since the

370

IP address of the resolver is used as the A records of
the nameservers in the zone files of the corresponding
domains, and the nameservers are essentially hidden
behind the IP addresses associated with the open re-
solvers. Specifically, when receiving a DNS request, the
value is checked in the cache, and if it is not in the
cache, it is relayed to the nameserver. The IP address
of the nameserver is hidden and only the resolver
communicates with the nameserver directly.

B. Collecting Data with Email Servers

We collected a set of DNS resolvers using email
server in the top-1K enterprise networks according to
Alexa®. We establish an SMTP session to each SMTP
email server in the list of enterprise networks, over
which we sent an email message to a non-existing
email-box in the target domain, that the SMTP server
is responsible for. Upon receipt of email messages,
the SMTP servers trigger DNS requests via the local
recursive resolvers in order to locate or to authenticate
the originator of the email message. Since the desti-
nation is a non-existing recipient, the receiving email
server must generate a Delivery Status Notification
(DSN, or bounce) message to the originator of the email
message informing the sender that the message could
not be delivered. The rule to send bounce messages
is mandated by [RFC5321], to enable the originator of
email messages to detect and fix problems and prevent
email messages from silently vanishing.

The email server, sending the bounce message, has
to perform some DNS resolution via its local DNS
resolver, typically searching for MX and A records of
the target email server, but also possibly via other DNS
request types.

In Table I we list the DNS request types’ triggered
by the resolvers in the 1K domains with emails that we
surveyed. We use the queries of the resolvers to initiate
our study (described in subsequent sections).

Query type | Fraction
Modern SPF queries (TXT qtype) 69.6%
Obsolete SPF [RFC7208] (SPF qtype) 14.2%
ADSP (w/DKIM) 2%
DKIM 0.3%
DMARC 35.3%
MX/A queries for sending email server | 30.4%

TABLE T
DNS QUERIES GENERATED DURING THE SMTP POPULATION
DATA COLLECTION.

C. Collecting Data with Web-Browsers
We used an ad-network to collect data from the
resolvers used by web clients. The vast majority of

3Alexa website also provides ranking of networks according to
different categories. We used top-1K networks of enterprises.



the clients attracted through an ad-network were from
networks of different ISPs.

For our study, we embedded our script (which is a
combination of Javascript and HTML) in an ad network
page, and placed it at a static URL. Our script is
wrapped in an iframe by the ad network, and iframe
is placed on webpages. When downloading the web
page, the Javascript causes the browser to navigate
to our URLs, which generates DNS requests to our
CDE infrastructure Figure 1. We received more than
12K web clients, in which an AJAX call was made
to our web server (indicating the page was loaded and
functional, i.e., Javascript running). Our test ran as a
pop-under and needed several minutes to complete. Out
of 12K clients, approximately 1:50 of the executions
resulted in tests that completed successfully.

IV. Caches Discovery and Enumeration

Understanding and characterising the caches in reso-
lution platforms is prerequisite for: identifying vulner-
abilities in caches, such as those exposing to cache
poisoning attacks, for hardening caches against attacks,
e.g., by designing secure caching policies or cache
selection algorithms, for upgrading DNS platforms with
the required resources, for extending DNS to support
new systems that use the DNS infrastructure and for
facilitating research on caches in the Internet.

In this section we present our methodology for char-
acterising caches and then in Section V we apply it
for evaluation of caches in the resolution platforms in
the Internet. Our study in this section is comprised of
two parts: we design techniques for caches discovery
and enumeration and we learn the mapping between the
caches and the set of ingress and egress IP addresses
of a given DNS resolution platform. We use a prober
to initiate our study by triggering DNS queries either
directly via the ingress IP address of the DNS resolution
platform, or indirectly, via email server or web browser
(see Section I-A). A direct prober can issue DNS request
the ingress IP address of the resolution platform. In con-
trast, when using the latter (email or web browsers) we
do not know the IP address of the ingress resolver and
do not communicate with it directly. Communication
between the prober and the DNS resolution platform
enables us to create a mapping between the prober and
the set of caches.

Then, we use the communication between the set
of egress IP addresses and our Caches Discovery and
Enumeration (CDE) infrastructure for discovery of the
egress IP addresses used by DNS resolution platform.

We describe methodology and then present methods
for counting the caches and characterising the cache to
IP mappings. We discuss the challenges in discovering

371

and enumerating caches when a direct access to the
target resolution platform is not available, i.e., when the
tests are carried out via web browsers or email servers,
and show how to overcome this limitation.

A. Setup and Methodology

The setting that we consider consists of a target
DNS resolution platform and of our Caches Discov-
ery and Enumeration (CDE) infrastructure, see Fig-
ure 1. All the communication channels between our
CDE infrastructure and the DNS resolution platform
are illustrated in blue. The CDE infrastructure owns a
domain cache.example and uses subdomains, under
cache.example. It also utilises nameservers, author-
itative for cache.example, and nameservers author-
itative for the subdomains of cache.example. The
probers initiate the study of DNS resolution platforms
by triggering DNS queries. The study is composed of
a set of g DNS requests to the (direct or indirect)
prober. The ingress DNS resolver is configured to use
one or more caches; let n be the number of caches. The
queries, arriving at the resolution platform, are assigned
to caches by means of a load balancer. The load balancer
is situated on the DNS resolution platform (see Figure
1).

Resolution platforms use different cache selection
methods for probing caches. Within our study we iden-
tified two cache selection methods: traffic dependent
(which attempt to evenly distribute the queries’ volume
to caches) and unpredictable. An example of the former
category is round robin cache selection, where the next
cache is probed each time a new query arrives. A
random cache selection is a representative of the un-
predictable category, where a randomly selected cache
is probed next. We also identified more complex cache
selection strategies, e.g., those that look not only at
the volume of the arriving DNS queries but are also
a function of a requested domain in the query or of a
source IP in a DNS request. Our measurement indicates
that more than 80% of the networks in our dataset
support unpredictable cache selection. A comprehensive
study of cache selection algorithms is outside the scope
of this study and we propose it as one of the interesting
followup topics for future work.

During each iteration, i.e., when the ingress resolver
receives a DNS query, exactly one cache is selected
by the load balancer for sampling. If a DNS record,
corresponding to the query, exists in the selected cache
(i.e., a cache hit event occurs), the query is responded
from the cache. Otherwise, if no corresponding value
exists in the cache (a cache miss event occurs), the query
is sent by the egress DNS resolver to the nameserver,
authoritative for the domain that was in the query. Our



Open Resolvers

Email Servers

Ad-Network

Network Operators % Network Operators % Network Operators %
Aruba S.p.A. 9.597 Google Inc. 24.211 Comcast Cable Communications, Inc. 15.02
Google Inc. 6.59 YandexLLC 10.526 Time Warner Cable Internet LLC 6.103
Korea Telecom 4.095 Amazon.com, Inc. 4.2105 Orange S.A. 5.634
INTERNET CZ, a.s. 3.199 Hangzhou Alibaba Advertising Co.,Ltd. 4.2105 Google Inc. 4,695
tw telecom holdings, inc. 3.135 |Internet Initiative Japan Inc. 4.2105 BT Public Internet Service 4.225
LG DACOM Corporation 2.687 Wehsense Hosted Security Network 4.2105 MCI Communications Services, Inc. Verizon 3.286
Data Communication Business Group 2.175 SAKURA Internet Inc. 3.1579 AT&T Services, Inc. 2.817
Getty Images 1.727 ADVANCEDHOSTERS LIMITED 2.1053 OVH SAS 2.817
CNCGROUP IP network Chinal69 Beijing 1.536 Dadeh Gostar Asr Novin P.J.S. Co. 2.1053 Free SAS 2.347
Level 3 Communications, Inc. 1.536 Limited liability company Mail.Ru 2.1053 Qwest Communications Company, LLC 2.347
OTHER 63.72 OTHER 38.947 OTHER 50.7

Fig. 2. Distribution of Internet Network Operators across the networks in our dataset.

study proceeds by observing and counting the number
of queries arriving at our nameservers.

In the following sections we describe techniques, that
use this setup, to characterise the caches, including
caches enumeration and mapping. We report on Internet
measurements of our techniques in Section V.

B. Techniques and Tools

Our study of the DNS resolution platforms is per-
formed on three dataset of networks: ISPs (via web
browsers), enterprises (via SMTP), and networks which
provide open resolution services. Applying our method-
ology to the DNS resolution platforms in each popula-
tion requires facing some challenges, as we next explain.
When studying open recursive resolvers (set-up 2 in
Figure 1), our prober has a direct access to the ingress
IP address, and can control the timing of the queries and
the number of times a given query is issued. In contrast,
when performing tests via email servers and web clients
our prober has only an indirect access to the ingress
resolver in the target DNS resolution platform (set-up
1 in Figure 1), and has to bypass the local caches and
proxies between the internal proxy (set-up 1 in Figure
1) and the ingress IP address of the resolver. The local
caches include caches in operating systems, caches in
stub resolvers, caches in web browsers and web proxies;
for instance, a local cache within the browsers, such
as Internet Explorer or the stub DNS resolver’s cache
within the operating systems, such as Windows8. The
intermediate local caches introduce two challenges: (1)
each hostname can be queried only once (the subsequent
queries for that name are responded from the local cache
without reaching the ingress resolver - until its time-to-
live (TTL) expires), and (2) during the test we do not
have control over the timing of the queries. We explain
our approaches for bypassing the local caches in Section
IV-B2.

372

Another challenge is related to a direct or indirect
access to the egress DNS resolver in the target resolution
platform. A direct access to egress IP address assumes
that our CDE infrastructure can attract DNS requests
for resources within the domain that we own, i.e., such
we can observe the queries arriving at our nameservers.
However, a direct egress access may not always be
available. For instance if it is desirable not to ‘leave
traces’ in the logs of a domain used for the tests (say,
if the caches study is performed by an attacker as part
of an Advanced Persistent Threat (APT) attack), or if
the users and servers in a target network are restricted
to use only a set of allowed domains (e.g., in some
critical infrastructures), or if the resolution platform is
restricted to using only domains that a nameserver is
authoritative for (see discussion in Section III-A). To
that end, we design indirect egress caches discovery
and enumeration techniques, using timing side channels.
The timing channel measures the difference in latency
for cached vs. non-cached records.

In Sections IV-B1 and IV-B2 we design methodolo-
gies assuming a direct egress access and in Section
IV-B3 we adapt the techniques for an indirect egress
access.

1) Direct Ingress and Direct Egress Access: Open
recursive resolvers provide direct access to triggering
DNS requests at ingress resolvers. In particular, in order
to discover and enumerate the caches used by a given
ingress IP address of an open resolver on a resolution
platform, our direct prober (set-up 2 in Figure 1) sends
g queries to a resource record within our domain, such
that all of the g queries are for the same query name. In
the zone file of our domain cache . example we setup
a corresponding DNS record, mapping the resource to
an IP address, as follows: name.cache.example
IN A a.b.c.d.



a) Caches Enumeration: On our nameserver we
count the number of queries that arrive from an egress
IP address of the target resolution platform for the name
that our client requested. The number of queries W< g
arriving at our nameserver is the number of caches used
by the resolution platform.

How many queries should be sent to an ingress IP
address to guarantee that all the caches are probed? If
the number of caches n is greater than ¢, we under-
estimate the caches. Alternately, using g > n allows to
cover all the caches. But, what should the value ¢ be?
In Section V-B we provide an analysis for the number
of queries needed to probe all the caches behind an
ingress IP address of a resolution platform. In Section
V we describe the approach that we devised and used
in our Internet evaluations.

b) IPs to Caches Mapping: In order to discover
the mapping between {I;y} ingress IP addresses and
clusters of caches we use the following approach: (1) we
apply the caches enumeration technique (above) using
any ingress IP address I}y (out of a set of {/y} ingress
IP addresses), and plant a ‘honey’ record in all the
caches mapped to that IP address. Then, for each ingress
IP Iiy (for 1< i< |{Iiv}|) we send queries for the
seeded ‘honey’ record. If queries are responded without
accessing our server, we add I}N to the same cluster of
caches as I}, We perform this for every ingress IP until
all are mapped.

The mapping from the set of caches to the egress IP
addresses is straightforward: typically, different egress
IP addresses participate in resolution chains. By repeat-
ing the experiment with a set of queries to an ingress IP
address, and checking which egress IP addresses they
arrive from at our nameservers, all the egress addresses
can be covered. The analysis for number of queries is
similar to ingress IP addresses and is given in Section
V-B.

In contrast to open resolvers, when DNS resolution
platforms are studied using email servers or web
browsers, there is no direct access to the resolver, and
all the queries are triggered by the (stub) DNS software.
As we discussed above, local caches pose a challenge
and impose two main limitations: same query will be
responded from the local cache (without reaching the
ingress resolver) and we cannot control the timing of
the issued DNS requests; We next show two ways we
devised to bypass the local caches.

2) Indirect Ingress and Direct Egress Access: In this
section we show how to adapt our methodologies when
an indirect access to ingress resolver is provided.

a) Bypassing Local Caches with CNAME Chain:
We setup g DNS records in our cache . example zone
mapping them to CNAME DNS record as follows:

x-1.cache.example IN CNAME name.cache.example

373

x-2.cache.example IN CNAME name.cache.example

x—g.cache.example
name.cache.example

IN CNAME name.cache.example
IN A a.b.c.d

Then we trigger ¢ DNS requests via email server
or web browser, for names x—1.cache.example,...,
x—qg.cache.example. The local caches are not in-
volved in the resolution process (specifically in resolv-
ing the CNAME redirection) and only receive the final
answer.

b) Bypassing Local Caches with Names Hierar-
chy: This technique utilises the hierarchy that can be
created with DNS names. We set up two zones as
follows:

;zone fragment for sub.cache.example
SORIGIN sub.cache.example.
x—1.sub.cache.example IN A a.b.c.e
x—2.sub.cache.example IN A a.b.c.e

IN A a.b.c.e

IN NS ns.sub.cache.example

x-g.sub.cache.example
sub.cache.example

;zone fragment for cache.example
SORIGIN cache.example.
sub.cache.example
ns.sub.cache.example

IN NS ns.sub.cache.example
IN A a.b.c.d

Then we trigger ¢ queries asking for A records of

x—1.sub.cache.example,...,.x—g.sub.cache.example.

First time, the cache in the target resolution platform
will ask for cache.example. The nameserver
authoritative for cache.example will return
a referral response for sub.cache.example,
ie., an NS and an A records for
ns.sub.cache.example. When queried for
an A record of x-i.sub.cache.example
(0 < i < gq), the nameserver will respond with an IP
address a.b.c.e. During the subsequent queries,
the cache will have stored the NS and A records for
sub.cache.example, and should query it directly
for the A records of x—i.sub.cache.example.
The number of queries arriving at the nameserver
of cache.example indicate the number of caches
used by a given IP address at a measured resolution
infrastructure.

3) Indirect Egress Access: When the CDE infrastruc-
ture is limited to using domains not under its control,
the queries do not arrive at our nameservers and we
cannot study the caches by monitoring the queries. To
that end, we devise a timing side channel which allows
counting the number of caches without observing the
arriving queries. We force all the caches to store a honey
record (in one of the domains that they can access)
utilising sufficient redundancy to ensure that all caches
are covered, e.g., issuing 100 queries to the resolution
platform.

Assuming we have a direct ingress access, we mea-
sure the latency it takes the target resolution platform



to respond to queries for the honey record (that already
exists in caches) vs records that are not in caches (e.g.,
a honey record with a random subdomain prepended to
it). Specifically, our direct prober measures the latency
of the responses that it receives.

When an indirect ingress access is provided, the study
depends on locating domains with a structure similar
to those described in Section IV-B2. Fortunately, such
zone files are common. We perform a measurement
evaluation for domains that use the names hierarchy
(described in latter approach for caches bypassing) -
popular Alexa domains that are under com TLD. For
comparison between direct and indirect ingress access,
we focus on the 1K domains where the nameserver IP
addresses are hidden behind recursive resolution caches
(see Section for details III-A), and use an open recursive
resolution access to those domains as well as access
via a web browser. We measure the latency it takes the
resolution platform to respond to queries for the honey
record when it is responded from the cache vs when
the query is forwarded to a nameserver, and count the
number of times the latency of the response that arrives
at our prober corresponds to an uncached latency — this
number corresponds to the amount of caches.

V. Measuring Resolution Platforms

In this section we apply the techniques developed in
Section IV for study of DNS resolution platforms in the
Internet. We first report on our results of enumeration of
caches behind IP addresses and on correlation between
IP addresses and caches. Then we provide an analysis
on the bound of the number of packets required for our
study of caches discovery and enumeration.

During our Internet measurements we incurred packet
loss in some networks, which impacted the results.
Highest packet loss was measured in Iran with 11%,
China almost 4%; the rest networks exhibited around
1% packet loss which is considered typical. A lost
packet during the tests affects the results of the test, and
to cope with packet loss we use a statistical approach we
dub carpet bombing, which is less sensitive to packet
loss. The idea is intuitive we increase the number of
probes we send to the target network, and instead of a
single query we use K queries; such that the parameter
K is a function of a packet loss in the measured network.

A. IP Addresses to Caches Mapping

Our measurements show that in very few cases the
resolution platforms in the Internet use a single IP
address, while typical platforms have multiple ingress
or egress IPs. In Figure 3 we plot our measurements for
number of egress IP addresses supported by resolution
platforms of the three common networks’ populations

374

Fig. 3. The number of egress IP addresses supported by resolution
platforms.

that we studied. In enterprises measured via email
servers, 50% of the platforms use more than 20 IP
addresses. In ISPs resolution platforms (measured via
ad-network) 50% use more than 11 IP addresses. In net-
works operating open resolvers the situation is slightly
different, 85% use 5 or less IP addresses.

cumulative distribution of cache count

cache count
sMTP 5P

. O TS VET

Fig. 4. The number of caches supported by resolution platforms.

Figure 4 shows our measurements of the cumulative
number of caches in DNS resolution platforms. The
networks running open resolvers use the least number of
caches, 70% use 1-2 caches per IP address. About 60%
of DNS platforms operated by ISPs use 1-3 caches, and
65% of networks measured via email servers use 1-4
caches per egress IP address.

The results in Figures 5, 7 and 8 provide the dis-
tribution of the number of ingress IP addresses vs.
caches for networks operating open resolvers, enterprise
networks and ISPs. The circles’ sizes correspond to
the number of measured networks that fall within that
set, i.e., the larger the circle is the more networks call
within that set. The center of the circle corresponds to
the (x,y) coordinate on the graph. The majority of the
networks with open resolvers have similar properties:



£ache count vi. [P count [Open Resolvens)

Cache count

Fig. 5. IP addresses vs. caches count in DNS platforms with open
resolvers.

use 1 ingress IP address and 1 cache — this corresponds
to the largest circle in Figure 5. Smaller circles on y
axis show that many other networks have less than 10
IP addresses. On the other hand, very few networks also
use more than 500 IP addresses, with more than 30
caches (top right circles in Figure 5).

Cache count vs. IP count
architecture breakdown

(IP=1,cache=1)

(IP>1,cache=1)

0 |
(IP=1,cache=1) (IP>1,cache>1)
®openresolvers mSMTP mISP

Fig. 6. IP addresses vs. caches count across three networks popula-
tions: open resolvers, enterprises and ISPs.

In contrast, the results for enterprise networks and
networks of ISPs are more scattered, with a more
even distribution and significantly less IP addresses.
ISP networks appear to use least caches and have the
smallest number of IP addresses, Figure 8.

We illustrate the percentages for different cache to
IP ratio in Figure 6. Almost 70% of networks with
open resolvers use DNS resolution platforms with one

375

IP address and one cache. In contrast, less than 10%
of ISP networks and less than 5% of enterprises use
a single address and cache. The majority of ISPs and
of enterprise networks use more than one address and
more than one cache (almost 65% of IPSs and more
than 80% of enterprises).

The difference in results between the networks with
open resolvers and the enterprise and ISP networks
corresponds to our data collection of networks of open
resolvers. Specifically, these DNS resolution caches
are configured to reduce traffic to the nameservers, to
protect the nameservers against attacks and to lower
the latency for clients’ communication to the services.
Since these caches are used only by clients accessing
that specific domain, as well as by other services in
those networks, the traffic volume is not high, hence a
few or even a single cache suffices.

cache count vs. IP count (SMTP)

cache count

Y

ok

Bl | 513

50 1m0 130

egress P address count

Fig. 7. IP addresses vs. caches count in SMTP population.

B. Analysis

In this section we provide bounds on the complexity
of caches enumeration problem. The complexity de-
pends on the cache selection algorithm, and on the
traffic from other clients, arriving to the resolution
platform.

Assuming a round robin cache selection and no traffic
from other sources, then ¢ = n DNS requests would be
needed to probe all the caches behind a given IP address
in the resolution platform.



cache count vs. IP count (ISP)

cache count

100 130

egress IP address count

Fig. 8. IP addresses vs. caches count in ad-network population.

What is the expected number of DNS requests,
needed to enumerate the caches assuming unpredictable
cache selection strategy?

Caches enumeration is an extension of the combina-
torial coupon collector problem [9], which one needs
to collect all coupons to win in a contest. Specifically,
given an urn of n different coupons from which coupons
are being collected equally likely and with replacement,
what is the probability that more than ¢ sample trials are
needed to collect all n coupons? In our setting the urns
are caches, and the question is how many DNS queries
does it take to make sure we cover all the caches?

Assume that each cache, out of n caches, is equally
likely to be selected as a candidate for a given query.
In each iteration exactly one cache is probed, and the
experiment has to be repeated until each of n caches
has been probed at least once. The cache selection is an
independent random variable, and a cache i is selected
with probability p; = % We then consider the following
problem: What is the expected number of queries q that
needs to be issued in order to probe each of n caches?

Theorem 5.1: Let X be the random number of queries
that need to be issued in order to probe all n caches,
such that X = X1+ ...+ X, and each X; (V0 < i <n)
denotes the number of queries required to probe cache
i, after probing cache i — 1. Then, the expected number
of queries ¢ = E(X) to probe all n caches is:

1
Pn

E(X)=E(X1)+...+E(Xn)=i+...+ = —+ ...+

1)

e
n

S S
-3

n

T X2z

i
= nlogn+ O (n) = ©(nlogn)

Proof 5.2: The first cache is probed with first query,

i.e., X1 = 1. The probability to probe cache i+ 1,

Ly nx H, = n(logn+ O(1))

376

after probing i caches for i € {1,...,n}, is % Since

the caches are selected with uniform probability X;
has a geometric distribution with parameter % By
linearity of expectations, we obtain that the expected
number of queries to probe all the caches is E(X) =
E(Xi))+ ..+ E(X,) = nx £} = n-H,, where H,
is the harmonic series, H, = X, +. For n — <, the
series converges to H, = logn+ €+ ﬁ +0 (”iz) Hence
E(X) = nlogn+ ne + %+ O(%). We obtain E(X) =
nlogn+ O (n) = O(nlogn).

In our Internet measurements, we perform caches
enumeration in two phases: init and then validate,
which we run N times in “parallel”. Namely, during
the initialisation phase we send N seeds: s1,$2,...,Sn
(in parallel or in rapid succession). Then, we run the
validate phase requesting for the records inserted during
the init phase: cy,...,cy (in parallel or in rapid succes-
sion). During the validate phase we check for presence
of our seeds in the caches, and count the instances of
caches.

A prerequisite is that N (number of copies) is larger
than »n (number of caches). Specifically, the expected
part of the n caches that is not covered in N attempts
is roughly exp(—%), so only a small fraction of caches
may be missed with N = 2xn. Consequently, with seeds
S1,...,Sy we statistically initiate all the caches and we
count the caches cy,...,cy by checking for presence of
seed records in them planted during the init phase.
We expect success rate of N - (1 fexp(f%))z; as %
grows, this asymptotically reaches N.

VI. Related Work

Our work is related to the research on DNS platforms
and its results and tools are especially important for
security of DNS. We review related work and the
relevant threats on caches and explain the relationship
to our work.

Particularly relevant to our work are studies on the
client side of the DNS infrastructure, including studies
of the actors involved in resolution platforms and study-
ing of DNS software fingerprinting. Prior work studied
the impact of caching in the resolvers on DNS perfor-
mance and on the latency perceived by the clients, e.g.,
[10], [11]. To optimise content distribution networks
(CDNs) [12] ran a study of associating DNS resolvers
with their clients, and also designed approaches to
fingerprint the operating system or DNS software but
did not evaluate them in the Internet-scale. This work
was extended by [13], which fingerprinted a limited
set of DNS software (Bind, Unbound and Windows)
in the wild. Both works [12], [13] use patterns in
DNS queries to fingerprint DNS software; example



patterns include the maximal queried length of CNAME
chains, presence of requests for AAAA (following
requests for A records). These techniques identify the
software supported by the egress IP addresses of DNS
resolvers, since they observe the query pattern which is
independent of the caching behaviour.

The caches play a much more significant role in
resolution chains than the ingress or egress resolvers.
In particular, the ingress resolvers relay queries from
clients to the caches, without applying caching logic on
the received records. Ingress resolvers are also often
configured to use upstream caches, such as Google
Public DNS, in which cases the client will only see the
forwarder whose sole functionality is to relay queries,
while the complex caching logic is performed by the
upstream cache. Furthermore, as we witnessed during
our Internet evaluations, typically multiple IP addresses
are involved in a resolution chain of a domain name,
and hence different IP addresses perform the resolution.
For instance, when resolving www . foo .example, the
request to the parent domain example arrives from
one egress IP address, and a subsequent request to
foo.example arrives from a different egress IP ad-
dress (more IP addresses are involved in longer resolu-
tion chains, e.g., such as CNAME chains). Consequently
a DNS software running on an egress IP address is
not representative of a DNS resolution platform and in
particular, does not reflect the inner workings of the
caching.

A study by [14] suggested to remove the DNS
resolution platforms, and to leave the resolution to
end hosts, arguing that the overhead on the existing
end hosts would not be significant. [15] evaluated
impact of domain name features on the effectiveness
of caching. Recently, Schomp et al [16], measured the
client side of the DNS infrastructure of open recursive
resolvers, in order to identify all the actors in DNS
resolution platforms. The goal of Schomp et al was
to understand the actors involved in DNS resolution,
however, their study did not cover the discovery and
study of caches and the mappings between IP addresses
and the caches hidden behind them. We extend the
client-side DNS infrastructure studies with designing
and evaluating methodologies for inferring the caches
topologies and structures, and provide methodologies
for inferring caches to IP addresses mapping, and for
calculating the number of caches behind a given IP
address of a DNS resolver.

A number of other studies were conducted on open
resolvers, e.g., [17], [18], where the IPv4 address block
is scanned for hosts responding to requests on port 53.
However, recently it was shown by [19], [20] that most
such open resolvers are either (misconfigured) home
routers and mismanaged (security oblivious) networks

377

or malicious networks operated by attackers (where the
open DNS resolver is set up for malware communication
to the command and control servers). In contrast to
studies on open resolvers, our research is done on well
managed networks, including enterprises, public DNS
operators, Internet Service Providers (ISPs) and popular
networks. We categorise the networks in our dataset and
describe our data collect in Section III.

Security of DNS typically refers to correctness of
DNS responses (against DNS cache poisoning attacks),
and privacy of clients and systems (against censorship
and monitoring).

There is a long history of DNS cache poisoning, [21],
[22], [7]. DNS cache poisoning attacks are known to
be practiced by governments, e.g., for censorship [23]
or for surveillance [24], as well as by cyber criminals
for credentials theft, malware distribution, and more.
In the course of a DNS cache poisoning attack, the
attacker provides spoofed records in DNS responses.
These spoofed records are cached, and then returned
to clients and systems, thereby redirecting them to
incorrect hosts. The recent wave of cache poisoning vul-
nerabilities as well as the evidence for DNS injections in
the Internet stimulated awareness within the operational
and research communities, and a number of studies
measuring DNS injections in the wild were conducted,
[25], [17], [26]. In our recent work [8] we analysed
vulnerabilities of caches to different records’ injection
methods. Another study [27] measured misconfigured
domains with dangling records, and showed attacks
exploiting them.

The results and conclusions derived from our study
contribute to the design of unilateral, non-cryptographic
defences against DNS cache poisoning. Although cryp-
tographic defence with DNSSEC was standardised al-
ready two decades ago, [RFC4033-RFC4034], it is not
widely deployed and even signed domains may often
be vulnerable to attacks, [28]. Utilising multiple caches
with unpredictable caches’ selection strategy increases
the difficulty for successful cache poisoning attacks. In
particular, to be effective the cache poisoning attack has
to be conducted against a specific cache. When multiple
caches are used in a DNS resolution platform, for cache
poisoning to succeed even a strong Man-in-the-Middle
(MitM) attacker would need to generate large traffic
volumes to be able to hit the same cache — which would
lead to detection of the attack.

VII. Conclusions

DNS has evolved into a complex infrastructure with
hosts receiving queries from the clients, caches that
store the requested records and hosts communicating
with the nameservers. We study the caches in popular



networks in the Internet, and developed tools for caches
enumeration and mapping to the ingress and egress IP
addresses.

Understanding and characterising the caches in net-
works in the Internet is primarily important for security,
we provide few examples in our work. Multiple caches,
along with unpredictable cache selection strategy, can
significantly raise the bar for DNS cache poisoning.

Our study shows that the IP addresses provide one
aspect of DNS resolution platforms, that is visible to the
communicating parties, such as clients and nameservers.
However, the IP addresses expose little information
about the internal configurations in DNS resolution
platforms. In particular, although in some cases we
witnessed a one-to-one correspondence between IP ad-
dresses and caches, in most cases the IP addresses had
little meaning. For instance, we often saw that multiple
different egress IP addresses participated in a resolution
of a given name, e.g., a CNAME chain often begins
with one IP address, which is replaced by others in
subsequent links in a CNAME chain.

VIII. Acknowledgements

The research reported in this paper has been supported
in part by the German Federal Ministry of Education
and Research (BMBF) and by the Hessian Ministry of
Science and the Arts within CRISP (www.crisp-da.de/).
This work has been co-funded by the DFG as part
of project S3 within the CRC 1119 CROSSING. We
are grateful to Microsoft Azure Research Award, which
enabled us to host our infrastructure on Azure platform.

References

[11 A. Klein, “BIND 9 DNS cache poisoning,” Trusteer, Ltd., 3
Hayetzira Street, Ramat Gan 52521, Israel, Report, 2007.

A. Herzberg and H. Shulman, “Security of patched DNS,” in
Computer Security - ESORICS 2012 - 17th European Sympo-
sium on Research in Computer Security, Pisa, Italy, September
10-12, 2012. Proceedings, 2012, pp. 271-288.

H. Shulman and M. Waidner, “Towards security of internet
naming infrastructure,” in European Symposium on Research in
Computer Security. Springer, 2015, pp. 3-22.

, “Fragmentation Considered Leaking: Port Inference for
DNS Poisoning,” in Applied Cryptography and Network Security
(ACNS), Lausanne, Switzerland. Springer, 2014.

A. Herzberg and H. Shulman, “Vulnerable delegation of
DNS resolution,” in Computer Security - ESORICS 2013
- 18th European Symposium on Research in Computer
Security, Egham, UK, September 9-13, 2013. Proceedings,
2013, pp. 219-236. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-40203-6_13

——, “Socket Overloading for Fun and Cache Poisoning,”
in ACM Annual Computer Security Applications Conference
(ACM ACSAC), New Orleans, Louisiana, U.S., C. N. P. Jr., Ed.,
December 2013.

(2]

[3]

(4]

[3]

(6]

378

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]
[24]

[25]

[26]

[27]

[28]

——, “Fragmentation Considered Poisonous: or one-domain-
to-rule-them-all.org,” in IEEE CNS 2013. The Conference on
Communications and Network Security, Washington, D.C., U.S.
IEEE, 2013.

A. Klein, H. Shulman, and M. Waidner, “Internet-Wide Study
of DNS Cache Injections,” in INFOCOM, 2017.

A. Boneh and M. Hofri, “The coupon-collector problem re-
visiteda survey of engineering problems and computational
methods,” Stochastic Models, vol. 13, no. 1, pp. 39-66, 1997.
J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “Dns
performance and the effectiveness of caching,” Networking,
IEEE/ACM Transactions on, vol. 10, no. 5, pp. 589-603, 2002.
D. Wessels, M. Fomenkov, N. Brownlee, and K. Claffy, “Mea-
surements and laboratory simulations of the upper dns hierar-
chy,” Passive and Active Network Measurement, pp. 147-157,
2004.

C. A. Shue and A. J. Kalafut, “Resolvers revealed: Charac-
terizing dns resolvers and their clients,” ACM Transactions on
Internet Technology (TOIT), vol. 12, no. 4, p. 14, 2013.

R. Chitpranee and K. Fukuda, “Towards passive dns software
fingerprinting,” in Proceedings of the 9th Asian Internet Engi-
neering Conference. ACM, 2013, pp. 9-16.

K. Schomp, M. Allman, and M. Rabinovich, “Dns resolvers
considered harmful,” in Proceedings of the 13th ACM Workshop
on Hot Topics in Networks. ACM, 2014, p. 16.

S. Hao and H. Wang, “Exploring domain name based features on
the effectiveness of dns caching,” ACM SIGCOMM Computer
Communication Review, vol. 47, no. 1, pp. 36-42, 2017.

K. Schomp, T. Callahan, M. Rabinovich, and M. Allman, “On
measuring the client-side dns infrastructure,” in Proceedings
of the 2013 conference on Internet measurement conference.
ACM, 2013, pp. 77-90.

, “Assessing dns vulnerability to record injection,” in Pas-
sive and Active Measurement. Springer, 2014, pp. 214-223.
M. Kiihrer, T. Hupperich, J. Bushart, C. Rossow, and T. Holz,
“Going wild: Large-scale classification of open dns resolvers,”
in Proceedings of the 2015 ACM Conference on Internet Mea-
surement Conference. ACM, 2015, pp. 355-368.

D. Dagon, N. Provos, C. P. Lee, and W. Lee, “Corrupted dns
resolution paths: The rise of a malicious resolution authority.”
in NDSS, 2008.

J. Zhang, Z. Durumeric, M. Bailey, M. Liu, and M. Karir,
“On the mismanagement and maliciousness of networks,” in to
appear) Proceedings of the 21st Annual Network & Distributed
System Security Symposium (NDSS14), San Diego, California,
USA, 2014.

J. Stewart, “Dns cache poisoning—the next generation,” 2003.
D. Kaminsky, “It’s the End of the Cache As We Know
It in Black Hat conference, August 2008, http://www.
blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/
BlackHat-Japan-08- Kaminsky- DNS08-BlackOps.pdf.

D. Anderson, “Splinternet behind the great firewall of china,”
Queue, vol. 10, no. 11, p. 40, 2012.

M. Hu, “Taxonomy of the Snowden Disclosures,” Wash & Lee
L. Rev., vol. 72, pp. 1679-1989, 2015.

P. Levis, “The collateral damage of internet censorship by dns
injection,” ACM SIGCOMM Computer Communication Review,
vol. 42, no. 3, 2012.

M. Wander, C. Boelmann, L. Schwittmann, and T. Weis, “Mea-
surement of globally visible dns injection,” Access, IEEE, vol. 2,
pp. 526-536, 2014.

D. Liu, S. Hao, and H. Wang, “All your DNS records point to us:
Understanding the security threats of dangling DNS records,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28,
2016, 2016, pp. 1414-1425.

H. Shulman and M. Waidner, “One Key to Sign Them All Con-
sidered Vulnerable: Evaluation of DNSSEC in Signed Domains,”
in The 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). USENIX, 2017.




