IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Internet-Wide Study of DNS Cache Injections

Amit Klein, Haya Shulman and Michael Waidner
Fraunhofer Institute for Secure Information Technology SIT
Darmstadt, Germany

Abstract—DNS caches are an extremely important tool, provid-
ing services for DNS as well as for a multitude of applications,
systems and security mechanisms, such as anti-spam defences,
routing security (e.g., RPKI), firewalls. Subverting the security
of DNS is detrimental to the stability and security of the clients
and services, and can facilitate attacks, circumventing even
cryptographic mechanisms.

We study the caching component of DNS resolution platforms
in diverse networks in the Internet, and evaluate injection
vulnerabilities allowing cache poisoning attacks. Our evaluation
includes networks of leading Internet Service Providers and
enterprises, and professionally managed open DNS resolvers. We
test injection vulnerabilities against known payloads as well as
a new class of indirect attacks that we define in this work. Our
Internet evaluation indicates that more than 92% of the Internet’s
DNS resolution platforms are vulnerable to records injection and
can be persistently poisoned.

I. INTRODUCTION

Domain Name System (DNS), [RFC1034, RFC1035], plays
a key role in the Internet. However, its significance also made
it a target of attacks, most notably, DNS cache poisoning, [1],
[2]1, [3], [4], [51, [6], [7], [8]. In the course of a DNS cache
poisoning attack, the attacker provides spoofed records in DNS
responses, in order to redirect the victims to incorrect hosts.
DNS cache poisoning can facilitate credentials theft, malware
distribution, censorship and more. DNS cache poisoning at-
tacks are known to be practiced by governments, e.g., China,
[9], USA with the QUANTUMDNS program [10], as well as
by cyber criminals.

The recent wave of cache poisoning vulnerabilities as well
as evidence for attacks against DNS in the wild stimulated
awareness within the operational and research communities,
and a number of studies measuring incorrect DNS responses in
the wild were conducted, [11], [12], [13], [14]. Nevertheless,
it is not clear how effective the injection of DNS records is
and whether, and under what conditions, such records poison
the caches of victim DNS platforms. In particular, different
resolvers’ software apply different logic when deciding if to
accept and cache the records and if to return them to clients.
In this work we perform the first study of caches in popular
DNS resolution platforms in the Internet, and evaluate the
effectiveness of records injection different networks, including
networks of large Internet Service Providers (ISPs), public
DNS service operators and enterprise networks. The findings
of our study are alarming: 92% of the measured networks are
vulnerable to records injection.

Adoption of DNSSEC, [RFC4033-RFC4035], would pre-
vent the vulnerabilities. Unfortunately, recently [15] found that
many domains are signed with vulnerable DNSSEC keys.

978-1-5090-5336-0/17/$31.00 ©2017 IEEE

Related Work: Prior work studied the impact of caching
in the resolvers on DNS performance and on the latency
perceived by the clients, e.g., [16], [17]. In a recent work,
[4], showed that a large fraction of nameservers use caches
for reducing the requests’ volume and to protect the name-
servers from Denial of Service (DoS) and other attacks. [18],
measured the client side of the DNS infrastructure, in order to
identify all the actors in DNS resolution platforms that provide
open recursive resolution. In their study Schomp et al used a
similar host discovery technique to the one proposed in [19] —
both scanned a fraction of the IPv4 addresses requesting host-
names in domains that they owned, and checking for requests
arriving at the nameservers authoritative for those domains. A
study of approaches for services discovery (including DNS)
via scanning of the IPv4 address block was done in [20]. To
optimise content distribution networks (CDNs) [21] ran a study
of associating DNS resolvers with their clients.

To study ranking assignment by caches on DNS records,
[22] applied a ProVerif formal verification program on the
formal models of the semantics of 3 DNS resolvers. Recom-
mendations for handling records in DNS responses, caching
and returning them to clients were discussed with respect to
Unbound DNS software in [23].

Contributions: In this work we perform an extensive
study of the caches in DNS resolution platforms in well man-
aged networks, comprising: (1) ISPs, (2) enterprises and (3)
popular networks operating open resolvers. For our data col-
lection we utilise three different approaches: (1) a distributed
ad-network, (2) email servers in networks of popular enter-
prises, (3) open resolvers used in popular domains (accord-
ing to Alexa websites ranking service, www.alexa.com).
Through evaluation and measurements we find that more than
92% of the studied networks are vulnerable to at least one
injection attack resulting in cache poisoning; this breaks down
to 97% of the networks operating open resolvers, 74% of the
enterprise networks measured via email servers, and 68% of
the ISPs measured via ad-network.

Our study of records injections uses a comprehensive set of
payloads, which consists of different combinations of records
and records’ types in DNS responses and in caches. We also
define a new type of payloads which allow indirect injection
of spoofed records for cache poisoning attacks.

Organisation: In Section II we present our study method-
ology and data collection. In Section III we define the payloads
that we use in our evaluation of records injection. In Section
IV we perform Internet evaluation of records injection against
popular DNS resolution platforms and public DNS services.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

We conclude this work in Section V.

II. METHODOLOGY

In this section we describe the attacker model that we
consider in this work, and the setting that we use for our
study and the data collection methodology.

A. Attacker Model

We consider an attacker that can inject valid DNS responses
into the communication between a victim DNS resolver and
a nameserver. Namely, the attacker does not need to guess
the challenge-response authentication parameters, such as the
source port and the DNS transaction identifier (TXID). We
assume that these are either known to the attacker, e.g., if
the challenge values are not randomised, or that the attacker
can guess them efficiently. For instance, a man-in-the-middle
(MitM) attacker sees the DNS requests and hence can simply
copy the challenge-response authentication parameters from
the request to the response. An off-path attacker does not
see the requests, therefore has to guess the challenge val-
ues. To that end, the attacker can apply fragmentation [8],
which allows to bypass guessing the parameters, or can apply
different techniques to guess the values, e.g., in vulnerable
implementations or via side-channels, [24], [7].

Since the attacker is assumed to be able to bypass the
challenge authentication (i.e., craft a DNS response with a
correct destination port, TXID and other values), the remaining
part is to provide such records to the victim resolver that would
be accepted, cached and provided to the clients. Caching
behaviour and which records the resolvers return to the clients,
both depend on the records that are already in cache, the
caching policies and the trust level that the DNS resolvers
assign to the records that they receive in responses. Hence the
attacker needs to find such records’ sequence, records’ type
and hostnames that would enable the attacker to overwrite
the values of the already cached legitimate DNS records
with spoofed values. For instance, overwriting a legitimate IP
address of a nameserver or a website with a spoofed one.

B. DNS Resolution Platforms

In our study, we consider a general model of DNS resolution
platforms, illustrated in Figure 1. The platform consists of a set
(232—7) of ingress DNS resolvers which handle DNS queries
from the clients, a set of n caches, and a set (2327Y) of egress
DNS resolvers, which communicate with the nameservers if
the queries from the clients cannot be satisfied from (one of)
the caches. The load balancers apply logic for selection of the
caches to probe, and for selection of an egress resolver’s IP
address (in case a requested record cannot be satisfied from
caches).

This infrastructure corresponds to complex platforms such
as Google Public DNS, but can also be abstracted to incor-
porate very simple DNS resolution platforms with a single IP
address which performs both the ingress and egress function-
alities and uses a single cache.

Set-up 1: Target DNS Resolution Platform

Indirect
Prober e, webs, ..}

‘_ () query J 5 ||

quary

Internal
Nameservers

ver |

=
=
F
]
~
[}

=
2
]
=
@
E
&
fiy

Set-up 2:
Direct
Prober

n Caches

Target Network

Fig. 1. DNS resolution platforms and our caches evaluation infrastructure.

Our test infrastructure in Figure 1 communicates with
the egress resolvers, and uses two set-ups to communicate
with the ingress resolvers: with direct and indirect probers,
for triggering the caches study. A direct prober is one that
can send queries to the ingress resolver directly, whereas
indirect uses proxies, such as web browsers or email servers
(details follow). Our infrastructure uses a dedicated domain,
for simplicity lets assume it is test .example and allocates
a number of subdomains, under test .example, for testing
the caches. We setup a number of nameservers, authoritative
for test.example, and nameservers authoritative for the
subdomains of test .example.

Our implementation uses the Stanford::DNSserver Perl au-
thoritative DNS server.

For the purpose of our study we evaluate poisoning the
records of the domain test.example (which is under our
control) and its subdomains. Specifically, we first insert into
the caches the real values of records under test .example
and then test the caching vulnerabilities. During that phase
we attempt to replace the real values with spoofed ones.
For evaluation of injection of spoofed values we set up a
dedicated infrastructure which ‘simulate’ attacker hosts. The
attacker’s hosts are located on a different network block then
the test .example infrastructure and use a distinct set of IP
addresses. For instance, we replace an IP address, a.b.c.d, of a
website under test .example with a malicious IP address
6.6.6.6 which is allocated to one of the hosts of the attacker.
Then we issue a request to the evaluated DNS platform, say
for IP address of the website under test .example, and
check which value we receive in response: the real IP address
a.b.c.d or the poisoned value 6.6.6.6.

C. Data Collection and Statistics

In this section we describe our data collection in DNS
resolution platforms in three common networks: (1) networks
of popular Alexa domains (www.alexa.com) that operate open
recursive resolvers, (2) networks of Internet Service Providers
(ISPs), and (3) networks of popular enterprises.

1) Collecting DNS Platforms with Open Resolvers: A
number of studies were conducted on open resolvers, e.g.,
[18], [12], [25]. The studies scan the IPv4 address block,
looking for hosts that serve DNS requests on port 53. However,
[19], [26] showed that most such open resolvers are either

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

(misconfigured) home routers and mismanaged (security obliv-
ious) networks or malicious networks operated by attackers
(e.g., where the open DNS resolver is set up for malware
communicaton to the command and control servers). In this
work we take a complementary approach and study open
resolvers in popular and well managed networks.

Our population of networks running open resolvers includes
Google Public DNS and OpenDNS and 1K networks oper-
ating open resolvers among top-10K Alexa networks (taken
from www.alexa.com).

We obtain the IP addresses of 1K domains containing open
resolvers out of 10K-top Alexa networks in two steps: (1)
we queried the 10K-top Alexa domains for nameserver (NS)
records, and their corresponding IP addresses (A records);
(2) we select the first 1K domains that provide open DNS
resolution services, by querying these IP addresses for records
in our domain.

We check that our networks with open resolvers do not
operate open relays, contain correctly configured PTR records,
and are stable over time. Specifically, it was shown that open
resolution service provided by malware or home routers is
unstable, with IP addresses going offline within a period of
hours, [27]. In contrast, the IP addresses of the open resolvers
that we used remained stable over a period of 2015-2017.

2) Collecting DNS Platforms with Email Servers: In ad-
dition to popular domains, Alexa service provides listing of
popular networks according to categories. We select the 1K-
top enterprise networks, and collect the IP addresses and MX
(mail exchanger) records of the SMTP (Email) services on
those networks. For each SMTP email server, we establish
an SMTP session, over which we sent an email message to
a non-existing email-box in the target domain. Since the
destination in the received email is a non-existing recipient,
the receiving SMTP email server must generate a Delivery
Status Notification (DSN) message to the originator of the
email message informing the sender that the message could not
be delivered. The rule to send bounce messages is mandated
by [RFC5321], to enable the originator of email messages
to detect and fix problems and prevent email messages from
silently vanishing.

The email server, sending the bounce message, has to per-
form some DNS resolution via its local DNS resolver, typically
searching for MX and A records of the target email server.
Other query types are also possible, for instance networks that
support DNS-based email sender authentication mechanisms
(against spam), [28], may also issue DNS requests for corre-
sponding DNS records. Indeed, during our evaluation of the
servers in the Internet, we also received requests for Sender
Policy Framework with SPF/TXT records [RFC4408] (69.6%
of the requests), DomainKeys Identified Mail with DKIM
[RFC6376] (0.3%), Domain based Message Authentication,
Reporting and Conformance DMARC [RFC7489] (35.3%).

3) Collecting DNS Platforms with Web-Browsers: We use
a popular ad-network to collect data from the resolvers used
by web clients. To that end, we embedded our Javascript code
in a SCRIPT tag in an ad network page, at a static URL.

Our script is wrapped in an [FRAME by the ad network,
and IFRAME is placed on webpages. When downloading the
web page, the clients generate DNS requests via (ingress)
recursive DNS resolvers on the networks of their ISPs to our
test infrastructure.

We received more than 12K web clients, in which an AJAX
call was made to our web server (indicating that the page was
loaded and functional, e.g., Javascript running). Our test ran as
a pop-under and needed several minutes to complete, hence
only 1:50 of the cases were successful, and produced valid
statistics for our study.

Our Javascript is non intrusive and only triggers DNS
requests to our test infrastructure.

III. INJECTION PAYLOADS

In this section we list and explain the payloads, which
we use for evaluation of injection vulnerabilities in DNS
resolution platforms.

A. Injection Methodology

The evaluation of record injections consists of three phases:
seeding, poisoning, and validating. During the seeding phase
we plant ‘honey’ DNS records into caches. Specifically, we
cause the DNS resolution platforms to issue queries for records
in the ‘victim’ domain. During the poisoning phase we attempt
to replace the authentic records by injecting spoofed records
with one of the payloads in Table I. During the validation
phase we check whether the poisoning attack succeeded by
probing the values of the ‘honey’ records. During the valida-
tion of honey records in payloads 1-14 in Table I we request
a new hostname, that is different from the hostname cached
during the seed phase. Then we check if the response arrives
from the real nameserver or from the attacker’s nameserver,
and we do not request the NS and A records — which we
attempt to overwrite during the poisoning phase — of the
nameserver directly. In the other payloads 15-18 in Table I
we check if the cache contains the values injected during the
poisoning phase — if so, then the attack succeeded. Otherwise,
if the records contain values planted during the seeding phase,
the attack failed.

These three phases are essential not only for validation of
successful cache-injection attacks but they also reflect the real
world — the DNS resolution platforms typically contain cached
records which the attacker wishes to replace with its own
values.

B. Payloads for Overwriting Cached Records

Injecting spoofed records does not guarantee that the re-
solvers will overwrite the original values of the cached records
with the new ones, nor does it guarantee that the resolvers will
provide these new values in responses to clients. In particular,
each DNS software assigns a different trust level (i.e., rank)
to the records that it receives in DNS responses. The higher
the rank assigned to the cached records, the more difficult it is
to replace their values with new values. For instance, consider
pointing a real nameserver to an attacker’s IP address, instead

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

of the authentic IP address of the nameserver. If records in
the attacker’s response receive lower rank than the cached
records, their value will be ignored. DNS resolvers also apply
different caching policies when deciding whether to accept and
use a record, cache it and if to return it to applications and
clients. The ranking of DNS records in responses is discussed
in [RFC2181] — this is however interpreted and implemented
differently by different DNS software.

In what follows we provide our evaluation of the injection
payloads against popular DNS software and against DNS
resolution platforms in the wild.

We list the payloads, that we use for overwriting the values
of cached records, in Table I. The payloads correspond to
different combinations of hostnames and types of records,
and sections in DNS responses where the records reside.
Each payload has a name and a sequence number in column
Test Name. The columns DNS Fields and Values in DNS
Fields contain the three sections (answer, authority,
additional) in a DNS response, and the records in those
sections — these are the values that comprise the (malicious)
payloads that are designed to override (authentic) cached
records during the poisoning phase. The cached records, which
the injected payloads attempt to override, appear in column
Overrides Cached. These cached records are seeded by us
during the seeding phase, and they correspond to the different
values that can be present in the victim cache during the
poisoning phase.

The column Auth Ref. indicates whether a DNS response
(during the seeding phase) arrives from the authoritative name-
server, namely, contains authority and additional sec-
tions and the AA bit is set to 1; e.g., see payloads 5 and 6 in
Table I. Authoritative responses are assigned a higher trust
level (rank 5) by the resolvers than non-authoritative (rank
3). For instance, cached records from authoritative response
cannot be overwritten with records from a non-authoritative
response. The Auth Ref. type response is relevant for attacks
that attempt to change the value of cached nameserver (NS)
records.

In all the payloads we assume that the authentic IP
is a.b.c.d and that the parent domain is TAIL, e.g.,
test.example. We use different subdomains under a TATL
domain, as names of DNS records in Figure I. We assume that
the attacker uses IP address ATTACKER.

The payloads can be categorised according to the injected
spoofed records during the poisoning phase. Injected records
can be nameserver hostname (NS), nameserver IP address
(A), hostnames of other services, such as email with MX
records, or IP addresses, such as of web server or email
server. Nameserver records can be provided in authority
and additional sections or in an answer section. Records
of other services are provided in the answer section. The
payloads can be grossly categorised according to the following
classes:

a) Overwrite Any Record Indirectly: we define a new
type of poisonous payloads (15-18 in Table I), which we
call the indirect attacks. In contrast to direct attacks, the

indirect attacks are effective after some other record expires.
Specifically, we inject into a victim cache a poisonous record
which does not immediately impact the resolution process,
but becomes effective after an authentic record expires from
the cache. Then, the next resolution request to that name will
return the spoofed record. The attacker seeds the poisonous
record in advance and it is guaranteed that the payload will
take effect on the first resolution for the target record after it
expires. The indirect record injection allows to attack records
which are otherwise difficult to target, e.g., due to a high trust
level that may be assigned to the already cached records. To
clarify the concept we present the following examples:

(Payload 16. akl) the attacker injects a CNAME
record mapping www.victim.example to
www.attacker.example. As long as the victim
resolver has a wvalid A record (IP address) for
www.victim.example it will use it. Once the A
record expires, the resolver falls back to using the (already
cached poisoned) CNAME record. Same applies to other
records, e.g., injecting a spoofed NS record, so that it is
requested for resolving a new MX record once the previous
one expires.

(Payload 17. wl11) attacker’s goal 1is to point
www.victim.example to attacker’s address. Assume
that the victim DNS resolver has a cached A record for
www.victim.example:
www.victim.example A a.b.c.d
The attacker crafts a malicious record in DNS response:
www.victim.example NS ns.attacker.example.
Notice that www.victim.example is not a zone but
a hostname pointing at a webserver. Since DNS software
uses the most accurate delegation it has in the cache, which
in this case is an NS record, the attacker turns it into a
zone in the malicious payload that it crafts stating that it
has a nameserver ns.attacker.example. When the A
record with value a.b.c.d expires, next time a resolver
receives a query for A of www.victim.example it will
go and ask the most accurate server (namely the one that
is authoritative for that domain). Hence it will send a query
to ns.attacker.example (as the nameserver) instead
of the nameserver of the parent domain victim.example
(which has lower precedence). Then, the attacker returns
a response which points the webserver to a malicious IP
address instead of the real one.

b) Overwrite Glue Records: this category is comprised
of payloads that replace cached glue records with spoofed
glue records (7,9-11,13,14 in Table I). The payloads over-
ride cached glue records (NS or A records of the authentic
nameserver) with spoofed glue records (NS or A records).
The newly cached glue records are assigned low trust level
by the resolvers, e.g., will not be returned to the clients
and applications. Notice that overwritten nameserver records
can subsequently be used to poison spoofed non-nameserver
records, such as applications and services, for instance mail
exchanger with MX record, or web server with A record.
Specifically, when the cached target victim records, e.g., MX,

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

expire from the cache, the resolver will query the malicious
nameserver (via cached glue A/NS records). Cached glue
records can also be used to inject new subdomains, e.g., for
phishing attacks.

¢) Overwrite Non-Nameserver Records: the payloads in
previous categories were designed to override A or NS records
of nameservers. In this category, we use a DNAME to override
records of any other service, e.g., MX. This category includes
payloads 12 and 15.

Consider for example that a victim resolver has a cached
record for www.victim.example. During the poisoning
phase, the attacker injects victim.example DNAME
attacker.example and www.attacker.example
A ATTACKER. As a result, when the A record for
www.victim.example expires from the cache, the
queries for www.victim.example will be resolved to
www.attacker.example.

IV. INTERNET MEASUREMENT OF PAYLOADS INJECTION

In this section we present the results of our evaluation of the
payloads injection against our dataset of networks. We explain
our evaluation against DNS resolution platforms with a single
cache, then in Section IV-C we extend our study to multiple
caches.

In the first step, we use our infrastructure to evaluate
known DNS caching resolvers — those which DNS software
and configuration is known to us before the evaluation, and
then report on our study of unknown caching resolvers. We
evaluate our tool against known and popular DNS caches,
hence creating a ‘caching behaviour fingerprint’ of those
DNS servers. Using the fingerprints we can then identify and
characterise the caches in DNS resolution platforms during
our Internet measurements.

A. Methodology

Our study is performed against DNS resolution platforms
in each of the three datasets that we collected (see Section
II). The evaluation is initiated by a prober either in set-up 1
or in set-up 2 (Figure 1) depending on whether we have a
direct access to the ingress DNS resolver or not. The prober
generates DNS requests to the ingress resolver for records
within our domains hosted on our test infrastructure. Then,
the communication with our nameservers is carried out by the
egress resolver. The evaluation keeps the egress resolver in
resolution iteration by utilising standard DNS behaviour, e.g.,
by redirecting it with referral responses to our subdomains.
During the evaluation we check the 18 payloads in Table I.

The evaluation consists of three phases, as described in
Section III-A. For each of the 18 payloads, we perform the
three phases. During the seed phase we plant a record into
the tested cache (Table I column Overrides Cached). Then,
during the poison phase we override the cached record with a
record in column Values in DNS Fields. We then check the
success by requesting the ‘honey record’ (i.e., the record that
indicates whether the poisoning was successful and replaced
the value of the seed).

Handling Packet Loss: Packet loss introduce noise into
the test results, and may make successful tests appear as failed,
for instance, if the poisonous payload is lost and hence not
cached, the cache will contain the original value of the ‘honey’
record. Most networks exhibit a typical packet loss of 1%
while others, such as Iran, have almost 12% packets’ loss.

To cope with packet loss we evaluate poisoning of each
payload in Table I against a target DNS resolution platform &
times (with k different queries). The parameter k& should be a
function of a packet loss in the measured network. To ensure
accuracy of our evaluation we used k = 10, i.e., repeating
each iteration (seed — poison — validate) for each payload
10 times.

B. Evaluation of DNS Platforms

a) Known DNS Caches: Table 2 summarises the results
of our evaluation of the DNS resolution platforms with the
popular caches. These include caches of public DNS providers
such as Google public DNS, as well as networks with open
source, or proprietary DNS software, and appliances. The first
column corresponds to the name and sequence number of
the payload in Table I. Subsequent columns show for each
DNS software (and version) which of the tests it was found
vulnerable to — namely, the evaluation resulted in successful
injection of payload into its cache. MaraDNS as well as
Nominum exhibit almost identical caching behaviour, and are
vulnerable to only two of the payloads.

The fingerprinting of the software or cache type is done
based on caching strategies and cache overwriting behaviour
using the payloads in Table I. The fingerprints enable us to
approximate the fraction of the caches in the Internet that
match our models reflecting the types of caching behaviour.

b) Unknown DNS Software: We then apply our eval-
uation over the DNS platforms in the dataset of networks
from Section II. Evaluation against unknown caches allows to
identify the fraction of vulnerable caches even without having
a fingerprint of its software; namely caches we have not ‘seen’
before. We list the results for our three networks populations
in Figure 3. All the DNS software were found vulnerable to
our indirect attacks, except for payload 15 (dname) — some
resolvers, such as google public DNS, do not cache/support
DNAME records. Furthermore, tests (3,4,13,14) in Figure 3,
cannot be performed with SMTP email servers, since the tests
require an A record query.

Figure 3 shows that the networks operating open resolvers
contain DNS platforms with most vulnerabilities — over 97%
of the networks are vulnerable to at least one payload. This is
typically due to direct communication with the ingress DNS
resolvers which provides better control of the timing and the
values of queries’ names and queries’ types, in contrast to
Email or web browsers.

The ISP networks evaluated via ad-network provide lowest
success rate, i.e., a bit less than 70% of the networks are
vulnerable to one or more injection payloads. The reason for
lower success is that many of the tests are interrupted in the
middle of the evaluation by the clients or due to timeout in

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Test DNS Values in Overrides ‘ Auth ‘ Direct ‘ Defence ‘
Name Fields DNS Fields Cached Ref.
Q A? two.test-ns0.TAIL test-ns0.TATL No No (A)/(B)
1. NSO An two.test-nsO.TAIL A a.b.c.d NS
Au test-ns0.TAIL NS ns2.test-ns0O.TAIL ns.test-ns0.TAIL
Ad ns2.test-ns0.TAIL A ATTACKER
Q A? two.test-nsO-auth.TAIL test-nsO-auth.TAIL Yes No (A)/(B)
2. NS0-auth An two.test-nsO-auth.TAIL A a.b.c.d NS
Au test-nsO-auth.TAIL NS ns2.test-nsO-auth.TAIL ns.test-nsO0-auth.TAIL
Ad ns2.test-nsO-auth.TAIL A ATTACKER
Q A? ns2.test-ns.TAIL test-ns.TAIL No No (A)
3.NS An ns2.test-ns.TAIL A ATTACKER NS
ﬁg test-ns.TAIL NS ns2.test-ns.TAIL ns.test-ns.TAIL
Q A? ns2.test-ns-auth.TAIL test-ns-auth.TAIL Yes No (A)
4. NS-auth An ns2.test-ns-auth.TAIL A ATTACKER NS
Qg test-ns—auth.TAIL NS ns2.test-ns—auth.TAIL ns.test-ns-auth.TAIL
Q A? two.test-ns2.TAIL test-ns2.TAIL No No (A)
5.NS2 An two.test-ns2.TAIL A a.b.c.d NS
ﬁg test-ns2.TAIL NS ns2.magic-ns2.TAIL ns.test-ns2.TAIL
Q A? two.test-ns2-auth.TAIL test-ns2-auth.TAIL Yes No (A)
6. NS2-auth An two.test-ns2-auth.TAIL A a.b.c.d NS
'ﬁg test-ns2-auth.TAIL NS ns2.magic-ns2-auth.TAIL ns.test-ns2-auth.TAIL
Q A? two.test-b4.TAIL ns.test-b4.TAIL N/A No (B)
7.b4 An — A
Au sub.test-b4.TAIL NS ns.test-b4.TAIL a.b.c.d
Ad ns.test-b4.TAIL A ATTACKER
Q A? two.test-ul-auth.TAIL test-ul-auth.TAIL Yes No (A)/(B)
8. ul-auth An — NS
Au test-ul-auth.TAIL NS ns2.test-ul-auth.TAIL ns.test-ul-auth.TAIL
Ad ns2.test-ul-auth.TAIL A ATTACKER
Q A? two.test-u3-2.TAIL ns.test-u3-2.TAIL N/A No (B)
9.u3-2 An two.test-u3-2.TAIL A a.b.c.d A
Au test-u3-2.TAIL NS ns.test-u3-2.TAIL a.b.c.d
Ad ns.test-u3-2.TAIL A ATTACKER
Q A? two.test-u3-3.TAIL ns.test-u3-3.TAIL N/A No (B)
10. u3-3 An — A
AU test-u3-3.TAIL NS ns.test-u3-3.TAIL a.b.c.d
Ad ns.test-u3-3.TAIL A ATTACKER
Q A2 two.sub.test-u3-4.TAIL ns.test-u3-4.TATL N/A No (B)
11.u3-4 An — A
Au sub.test-u3-4.TAIL NS ns.test-u3-4.TAIL a.b.c.d
Ad ns.test-u3-4.TAIL A ATTACKER
12. w-dname Q A? two.test-w-dname.TAIL (all) .test-w-dname.TAIL N/A No no
) An test-w-dname.TAIL DNAME magic-w-dname.TAIL All DNAME
Au — types from
Ad — cache
Q A? two.test-w7.TAIL ns.test-w7.TAIL N/A No [break]
13. w7 An two.test-w7.TAIL CNAME ns.test-w7.TAIL; A CNAME
ns.test-w7.TAIL A ATTACKER a.b.c.d chain
Au/Ad —
Q A? ns.sub.test-w8.TAIL ns.test-w8.TAIL N/A No [break]
14. w8 An sub.test-w8.TAIL DNAME test-w8.TAIL; A DNAME
ns.test-w8.TAIL A ATTACKER a.b.c.d chain
Au/Ad —
Q A? zwei.test-dname.TAIL (all) .test—-dname.TAIL N/A Yes no
15. dname An test-dname.TAIL DNAME magic-dname.TAIL ALL DNAME
Au — types from
Ad — cache
Q A? zweil.test-akl.TAIL onel.test-akl.TAIL N/A Yes [break]
16. ak1 An zweil.test-akl.TAIL CNAME onel.test-akl.TAIL; ALL CNAME
onel.test-akl.TAIL CNAME onel.magic-akl.TAIL TYPES chain
Au/Ad —
Q A? zwei.onel.test-wll.TAIL onel.test-wll.TAIL N/A Yes (A)
17. wit An — NS
ﬁg onel.test-wll.TAIL NS ns2.magic-wll.TAIL ANY
Q A? zwei.onel.test-wllbis.TAIL onel.test-wllbis.TAIL N/A Yes (A)/(B)
18. w11bis An — NS
Au onel.test-wllbis.TAIL NS ns2.test-wllbis.TAIL ANY
Ad ns2.test-wllbis.TAIL A ATTACKER

PAYLOADS FOR DNS RECORDS’ INJECTION. DEFENCES LEGEND: (A) AUTHORITY QUERY FOR NS AFTER REFERRAL; (B) AUTHORITY QUERIES FOR
NAMESERVER IP ADDRESSES.

the browser; for instance, Chrome 48 times-out long before
the tests are completed (due to a bug which was later fixed in
Chrome 49).

The results for SMTP are slightly better than for ad-
networks. In this set-up, as is the case with browser based
evaluation, indirect access introduces noise and higher failure
rates. In particular, local caches (of browsers and operating

systems), as well as lack of control of the timing of the queries,
make the evaluation more difficult.

Despite the higher failure rates among ISPs (with ad-nets)
and enterprises (with SMTP servers), the fraction of networks
that were found to be vulnerable to at least one injection
payload is alarmingly high, and the majority of the networks
are vulnerable to at least one injection payload. The combined

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

MaraDNS MSDNS6.1 | MSDNS6.2 | MSDN56.3 Google BIND Nominum Nominum
BIND BIND Unbound 3.207 PowerDN5 | Win Server'08 | Win Server'12 | Win Server'12 Public Open 9.10.2-P2 Vantio Vantio
Name 9.10.2-F2 9.4.1 1.54 Deadwood 3.7.3 R2 6.1.7601) 6.2.9200 R2 6.3.9600 DNS DNS W/DNSSEC | CacheServe v5 | CacheServe v7
1 ns0 no yes yes no yes yes yes yes no yes no no no
2 ns0-auth no yes Yes no yes no no no no no no no no
3 ns | yes yos yes no yes yes yos yes no yes no no no
4 ns-auth ¥es yes yes no yes no no no no no no no no
5 mns2 yes yos yes no yos yes yos yes no yos no no no
& ns2-auth yes yes yes ne yes no na no no na ne no ne
7 b4 no no no no yes yes yes yes no yes no no no
8 ul-auth no no yes no yes no no no no na no no no
9 w32 no no yes no yes yes yes yes na yes no nao no
10 u3-3 no no yas no yes yas yos yas no no no no no
11 u3-4 yes yes yes no yes yes yes yes na yes yes no no
12 w-dname yes yos no no no no yos yes no no yas no no
13 w7 no no no no yes yes yes yes na yes no no no
14 w8 yes yes na no ¥o5 yes yes yes na yes no na no
15 dname yes yos no no no no yos yes no no yes no no
16 akl yes yes no no yes yes yes yes yes yes no no no
17 wil yes yes yes yes yes yes yes yes yes yes yes yes yes
18 wilbis yes yes yes yes yes yes yes yes yes yes yes yes yes

Fig. 2. Evaluation of the cache poisoning payloads against popular DNS software and public DNS services.

100

Popular Networks
20 = Enterprise Networks
@ = ISP Networks

9 0 M 12 13 14 : >
Test

70

60

50
40
30
20
A i
0
1 3 4 5] 7 8

2

Fig. 3. Evaluation of payloads injections against networks in our dataset.

tests (including indirect attacks) across all network populations
exhibit more than 92% success rate.

The DNS platforms typically more than a single cache, we
next explain how our evaluation handles multiple caches.

C. Extension to Multiple Caches

Often DNS resolution platforms use more than one cache,
e.g., for efficiency. We show how to extend our study to
evaluate DNS platforms with multiple caches. The main idea
behind multiple caches is using multiple number of DNS
requests that would ensure probing all the caches used by a
given DNS resolution platform.

When a resolution platform has more than one cache we
cannot guarantee that all the payloads will be evaluated in
sequence against the same cache. In particular, often the
queries will be distributed among different caches, hence, it
can often happen that the seed would be placed in one cache,
and the malicious payload would be directed to another cache.
To cope with multiple caches, instead of having the same
cache handle the attack cycle (seed — poison — validate),
we “bombard” with (/V) multiple “parallel” steps of (seed
— poison — check). Namely, during the seeding phase we
send N seeds: s1, s3, ..., sn. Then, during the poisoning phase

we send [V instances of the same payload: py, ..., px. Finally,
we initiate the validate phase requesting the ‘honey’ records:
Cly...,CN.

A prerequisite is that N (number of copies in the attack)
is larger than n (number of caches). Specifically, the expected
part of the n caches that is not covered in N attempts is
roughly exp(-).

Overall, if the target DNS resolver is vulnerable, in the last
phase we expect success rate of N - (1 — exp(— %))2; as %
grows, this asymptotically reaches N.

Our measurements show that typically the resolution plat-
forms in the Internet use more than a single IP address
and more than a single cache. In Figure 4 we plot our
measurements for number of caches supported by resolution
platforms in the three common networks’ populations that we
studied. The networks running open resolvers use the least
number of caches, 70% have 1 to 2 caches per IP address.
About 60% of DNS platforms operated by ISPs use 1-3 caches,
and 65% of networks measured via email servers use 1-4
caches per ingress IP address.

— Cpen e —SWTP

Fig. 4. The number of caches supported by resolution platforms.

The results in Figures 6 and 7 provide the distribution of
the number of ingress IP addresses vs. caches for networks
operating open resolvers, enterprise networks and ISPs. The

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

circles’ area corresponds to the number of measured networks
that fall within that set, i.e., the larger the circle is the
more networks fall within that set. The center of the circle
corresponds to the (z, y) coordinate on the graph. The majority
of the networks with open resolvers have similar properties:
use | ingress IP address and 1 cache — this corresponds to
the largest circle in Figure 7. Specifically, as Figure 5 shows,
almost 70% of the networks with open resolvers use DNS
resolution platforms with one IP address and one cache.

Smaller circles on y axis show that many other networks
have less than 10 IP addresses. On the other hand, very few
networks also use more than 500 IP addresses, with more than
30 caches (top right circles in Figure 7).

Fig. 5. IP addresses vs caches count across three networks populations.

Networks of enterprises

Cache count

911

Egress IP Addresses count

Fig. 6. IP addresses vs caches count in SMTP population.

In contrast, the results for enterprise networks and networks
of ISPs are more scattered, with a more even distribution and
significantly less IP addresses. ISP networks appear to use
least caches and have the smallest number of IP addresses.
Less than 10% of ISP networks and less than 5% of enterprises
use a single address and cache, see Figure 5. The majority of
ISPs and of enterprise networks use more than one address

and more than one cache (almost 65% of IPSs and more than
80% of enterprises).

In this section we analyse the upper bound on the number
of DNS requests, needed to enumerate the caches.

Assume that each cache, out of n caches, is equally likely to
be selected as a candidate for a given query. In each iteration
exactly one cache is probed, and the experiment has to be
repeated until each of n caches has been probed at least once.
The cache selection is an independent random variable, and a
cache ¢ is selected with probability p; = % We then consider
the following problem: What is the expected number of queries
q that needs to be issued in order to probe each of n caches?

Theorem 4.1: Let X be the random number of queries that
need to be issued in order to probe all n caches, such that X =
X1+ ...+ X, and each X; (M) < ¢ < n) denotes the number
of queries required to probe cache i, after probing cache ¢ — 1.
Then, the expected number of queries ¢ = F(X) to probe all

n caches is: E(X) = E(XG) + ... —|—E(Xn)): et =

Dy o4+ %=nx 1+i4.4+1 =px3r =
nx H, =n(logn + ©(1)) =nlogn + O(n) = O(nlogn).
Proof. The first cache is probed with first query, i.e.,
X, = 1. The probability to probe cache i + 1, after probing %
caches fori € {1,...,n}, is ”;i. Since the caches are selected
with uniform probability X; has a geometric distribution with
parameter "’T’“ By linearity of expectations, we obtain that
the expected number of queries to probe all the caches is
EX) =EX1)+ ...+ E(X,) = nx Z?zl% =n- Hy,
where H,, is the harmonic series, H,, = Z;—;l%. For n — o,
the series converges to H, = logn + ¢ + 5~ + O(:%).
Hence E(X) = nlogn + ne + 3 + O(L). We obtain
E(X)=nlogn+ O(n) = O(nlogn). I

V. CONCLUSIONS

Our study of the injection vulnerabilities in DNS resolution
platforms revealed significant security problems. We showed
that the vast majority of the platforms — including those
operated by large ISPs and enterprises — are vulnerable: DNS
caches can be poisoned persistently, with little effort and in
a stealthy way. This represents a huge risk for the Internet
overall and for systems and applications relying on DNS.

Obviously, it is important to raise awareness for these facts
and motivate adoption of countermeasures. Our study serves as
an important guidance for DNS software vendors and operators
for design and configuration of secure DNS platforms. We
provide recommendations for defences in Table I column
Defences. Patching the caches would even in some cases
provide defences against Man-in-the-Middle attackers.

In our study we focus on IPv4 DNS resolvers, and use
queries IPv4 (A) resource record (RR) addresses, as well as
payloads only with IPv4 addresses. Extending our study to
mixed (IPv6 and IPv4) environments may pose an interesting
challenge and opportunities, and we leave it for future work.

VI. ACKNOWLEDGEMENTS

We thank Amir Herzberg and Stephane Bortzmeyer for their
helpful comments on our manuscript. The research reported

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Popular networks with Open Resolvers

Cache count

Egress IP Addresses count

Networks of ISPs

Cache count

Egress IP Addresses count

Fig. 7. IP addresses vs caches count in networks with open resolvers (left) and ISP networks (right).

in this paper has been supported in part by the German
Federal Ministry of Education and Research (BMBF) and
by the Hessian Ministry of Science and the Arts within
CRISP (www.crisp-da.de/). We are grateful to Microsoft Azure
Research Award, which enabled us to host our infrastructure
on Azure platform.

(1]
[2]

3

—

[4]

(5]

(6]

(7]

[8]

[9]
[10]

[11]

[12]

REFERENCES
J. Stewart, “Dns cache poisoning—the next generation,” 2003.
D. Kaminsky, “It’s the End of the Cache As We
Know It in Black Hat conference, August 2008, http:

/iwww.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/
BlackHat-Japan-08-Kaminsky-DNSO08-BlackOps.pdf.

A. Herzberg and H. Shulman, “Security of patched DNS,” in Computer
Security - ESORICS 2012 - 17th European Symposium on Research in
Computer Security, Pisa, Italy, September 10-12, 2012. Proceedings,
2012, pp. 271-288.

H. Shulman and M. Waidner, “Towards security of internet naming
infrastructure,” in European Symposium on Research in Computer Se-
curity. Springer, 2015, pp. 3-22.

, “Fragmentation Considered Leaking: Port Inference for DNS
Poisoning,” in Applied Cryptography and Network Security (ACNS),
Lausanne, Switzerland. Springer, 2014.

A. Herzberg and H. Shulman, “Vulnerable delegation of DNS
resolution,” in Computer Security - ESORICS 2013 - 18th European
Symposium on Research in Computer Security, Egham, UK, September
9-13, 2013. Proceedings, 2013, pp. 219-236. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-40203-6_13

, “Socket Overloading for Fun and Cache Poisoning,” in ACM
Annual Computer Security Applications Conference (ACM ACSAC), New
Orleans, Louisiana, U.S., C. N. P. Jr., Ed., December 2013.

, “Fragmentation Considered Poisonous: or one-domain-to-rule-
them-all.org,” in IEEE CNS 2013. The Conference on Communications
and Network Security, Washington, D.C., U.S. 1EEE, 2013.

D. Anderson, “Splinternet behind the great firewall of china,” Queue,
vol. 10, no. 11, p. 40, 2012.

M. Hu, “Taxonomy of the snowden disclosures,” Wash & Lee L. Rev.,
vol. 72, pp. 1679-1989, 2015.

P. Levis, “The collateral damage of internet censorship by dns injection,”
ACM SIGCOMM Computer Communication Review, vol. 42, no. 3,
2012.

K. Schomp, T. Callahan, M. Rabinovich, and M. Allman, “Assessing dns
vulnerability to record injection,” in Passive and Active Measurement.
Springer, 2014, pp. 214-223.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

M. Wander, C. Boelmann, L. Schwittmann, and T. Weis, “Measurement
of globally visible dns injection,” Access, IEEE, vol. 2, pp. 526-536,
2014.

A. Borgwart, S. Boukoros, H. Shulman, C. van Rooyen, and M. Waidner,
“Detection and forensics of domains hijacking,” in 2015 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2015, pp. 1-6.
M. Ben-Yossef, H. Shulman, M. Waidner, and G. Beniamini, “Factoring
DNSSEC: Evaluation of Vulnerabilities in Signed Domains,” in NSDI,
2016.

J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “Dns performance and
the effectiveness of caching,” Networking, IEEE/ACM Transactions on,
vol. 10, no. 5, pp. 589-603, 2002.

D. Wessels, M. Fomenkov, N. Brownlee, and K. Claffy, “Measurements
and laboratory simulations of the upper dns hierarchy,” Passive and
Active Network Measurement, pp. 147-157, 2004.

K. Schomp, T. Callahan, M. Rabinovich, and M. Allman, “On measuring
the client-side dns infrastructure,” in Proceedings of the 2013 conference
on Internet measurement conference. ACM, 2013, pp. 77-90.

D. Dagon, N. Provos, C. P. Lee, and W. Lee, “Corrupted dns resolution
paths: The rise of a malicious resolution authority.” in NDSS, 2008.

D. Leonard and D. Loguinov, “Demystifying service discovery: imple-
menting an internet-wide scanner,” in Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement. ACM, 2010, pp. 109—
122.

C. A. Shue and A. J. Kalafut, “Resolvers revealed: Characterizing dns
resolvers and their clients,” ACM Transactions on Internet Technology
(TOIT), vol. 12, no. 4, p. 14, 2013.

S. Son and V. Shmatikov, “The hitchhikers guide to dns cache poison-
ing,” in Security and Privacy in Communication Networks. Springer,
2010, pp. 466-483.

W. Wijngaards, “Resolver side mitigations,” 2009.

A. Klein, “BIND 9 DNS cache poisoning,” Trusteer, Ltd., 3 Hayetzira
Street, Ramat Gan 52521, Israel, Report, 2007.

M. Kiihrer, T. Hupperich, J. Bushart, C. Rossow, and T. Holz, “Going
wild: Large-scale classification of open dns resolvers,” in Proceedings of
the 2015 ACM Conference on Internet Measurement Conference. ACM,
2015, pp. 355-368.

J. Zhang, Z. Durumeric, M. Bailey, M. Liu, and M. Karir, “On the mis-
management and maliciousness of networks,” in to appear) Proceedings
of the 21st Annual Network & Distributed System Security Symposium
(NDSS14), San Diego, California, USA, 2014.

J. Mauch, “Open resolver project,” in Presentation, DNS-OARC Spring
2013 Workshop (Dublin), 2013.

A. Herzberg, “DNS-based email sender authentication mechanisms: A
critical review,” Computers & Security, vol. 28, no. 8, pp. 731-742,
2009.

