CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

AuthorBoutros, Fadi; Fang, Meiling; Klemt, Marcel; Fu, Biying; Damer, Naser
AbstractFace image quality assessment (FIQA) estimates the utility of the captured image in achieving reliable and accurate recognition performance. This work proposes a novel FIQA method, CR-FIQA, that estimates the face image quality of a sample by learning to predict its relative classifiability. This classifiability is measured based on the allocation of the training sample feature representation in angular space with respect to its class center and the nearest negative class center. We experimentally illustrate the correlation between the face image quality and the sample relative classifiability. As such property is only observable for the training dataset, we propose to learn this property by probing internal network observations during the training process and utilizing it to predict the quality of unseen samples. Through extensive evaluation experiments on eight benchmarks and four face recognition models, we demonstrate the superiority of our proposed CR-FIQA over state-of-the-art (SOTA) FIQA algorithms.
ConferenceConference on Computer Vision and Pattern Recognition 2023
ProjectNext Generation Biometric Systems