Publications

Privacy-Preserving Whole-Genome Variant Queries

AuthorDemmler, Daniel; Hamacher, Kay; Schneider, Thomas; Stammler, Sebastian
Date2017
TypeConference Proceedings
AbstractMedical research and treatments rely increasingly on genomic data. Queries on so-called variants are of high importance in, e.g., biomarker identification and general disease association studies. However, the human genome is a very sensitive piece of information that is worth protecting. By observing queries and responses to classical genomic databases, medical conditions can be inferred. The Beacon project is an example of a public genomic querying service, which undermines the privacy of the querier as well as individuals in the database. By secure outsourcing via secure multi-party computation (SMPC), we enable privacy-preserving genomic database queries that protect sensitive data contained in the queries and their respective responses. At the same time, we allow for multiple genomic databases to combine their datasets to achieve a much larger search space, without revealing the actual databases’ contents to third parties. SMPC is generic and allows to apply further processing like aggregation to query results. We measure the performance of our approach for realistic parameters and achieve convincingly fast runtimes that render our protocol applicable to real-world medical data integration settings. Our prototype implementation can process a private query with 5 genetic variant conditions against a person’s exome with 100,000 genomic variants in less than 180 ms online runtime, including additional range and equality checks for auxiliary data.
Conference16. International Conference on Cryptology And Network Security (CANS'17)
InCryptology and Network Security, p.71-92
PublisherSpringer
PartnTUD-CS-2017-0264
Urlhttps://tubiblio.ulb.tu-darmstadt.de/id/eprint/101533